0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрический привод автомобиля против традиционного

Содержание

Электрический привод автомобиля против традиционного

Электродвигатели гибридных и электрических автомобилей на самом деле помимо экономии топлива имеет громадный потенциал в будущем для повышения мощности и безопасности. Уже в наши дни некоторые гибридные полноприводные автомашины имеют преимущество перед бензиновыми транспортными средствами оборудованные AWD приводом.

Как работает традиционная All-Wheel Drive система?

Есть несколько разновидностей систем AWD. Наибольшее распространение получила система, передающая постоянно на все четыре колеса крутящий момент не зависимо от уровня тяги, угла поворота и других факторов. Главный недостаток постоянного полного привода это неэффективность расхода топлива. В некоторых же моделях оснащенные AWD приводом электроника может изменять уровень крутящего момента, распределяя мощность между осями, в зависимости от необходимости. В этом случае расход топлива значительно меньше, но не намного.

Для борьбы с лишним расходом топлива некоторые производители предлагают автомобили с непостоянным полным приводом. В основное время машина работает без полного привода. Но как только электроника автомобиля определяет, что какие то колеса теряют сцепление с дорогой, крутящий момент начинает передаваться на другую ось. Это позволяет существенно снизить потребления топлива (особенно при поездках в городском режиме). Но и эта система имеет также свои недостатки. К примеру, машины с подобным подключаемым полным приводом не достаточно мощные. К тому же страдает безопасность автомобиля, поскольку позднее подключение привода во время пробуксовки или скольжения на дороге может не помочь в случае заноса, что может привести к аварии.

Как работает Hybrid All-Wheel Drive система?

С помощью электродвигателей гибридные автомобили более безопасные на дороге (имеют низкий риск заноса, в результате потери сцепления), и имеют низкий расход топлива. К примеру, в Lexus RX 450h электродвигатели (их в этой модели два) помогают бензиновому двигателю, за счет увеличения крутящего момента и мощности, а также снижают потребление топлива традиционным мотором.

В RX450h AWD электродвигатели работает с каждой осью автомобиля. Когда автомобиль движется в городском потоке по сухому асфальту, крутящий момент от бензинового мотора передается только на одну ось. В этот момент электроника может подключить в работу электрические силовые агрегаты, которые разгружают традиционный мотор, и снижают потребление топлива.

Так во время резкого разгона с места, задний электромотор добавляет крутящий момент задним колесам. Если при прохождения поворота на скорости передние колеса теряют сцепление с дорогой (к примеру, на мокром асфальте), то электроника подключает передний электродвигатель, который начинает передавать крутящий момент на переднюю ось.

Эта электронная система передачи крутящего момента мгновенна. Но в отличие от традиционных автомобилей, электромоторы позволяют обеспечить автомобилю мгновенный крутящий момент.

Даже если машина не полноприводная электрические технологии позволили существенно увеличить максимальный крутящий момент автомобилям. Так в компактной модели Chevrolet Spark EV крутящий момент составляет 542 Нм. Та же картина и с элекрокаром Tesla Model S P85, у которого практически с самого начала доступно 600 Нм максимального крутящего момента. Напомним, что в следующем году в серийное производство поступит полноприводная версия модели S, сразу после выхода электрического кроссовера Tesla X.

Гибридные машины с AWD приводом набирают популярность

Помимо автомобилей Lexus и Toyota другие автопроизводители также готовы предложить свои гибридные модели. К примеру компания Acura предлагает модель RLX Sport-Hybrid с тремя электромоторами, которые помогают работе 3,7-литровому мотору V6. Так один электро двигатель передает крутящий момент на передние колеса. Два других на заднюю ось. Задние электрические силовые установки могут работать независимо друг от друга.

Еще один автомобиль, который готовится к выпуску это Acura NSX, которая будет оснащена двумя электрическими двигателями, передающие мощность на передние колеса, когда как двигатель V6 располагается посередине автомобиля и будет передавать крутящий момент на заднюю ось.

На самом деле, на мировом авторынке появилось уже много автомашин, на которых установлены электромоторы, которые помогают полноприводным системам работать более эффективно.

Так модели 918 Spyder, благодаря бензиновому мотору V8 и электрических двигателей удалось проехать круг на знаменитой трассе в Нюрнберге всего за 6:55.

Еще один пример. BMW i8 также использует полноприводные технологии на базе гибрида электрической силовой установки и бензинового мотора, благодаря чему машина может разгоняться с 0-100 км/час всего за 4,4 секунды. Этот впечатляющий результат достигается за счет 1,5 литрового трехцилиндрового мотора и электроустановки. Помимо мощности, электромотор позволяет существенно экономит расход топлива. Так модель i8 потребляет всего 3,2л/100км. Это делает i8 самым экономичным в мире гибридным спорткаром.

Стоит отметить, что Porsche 918 и i8 могут работать полностью в электрическом режиме без участия бензиновых моторов, что позволяет ограниченное расстояние проехать без потребления топлива.

В настоящий момент потенциал развития полноприводных электрических и гибридных автомобилей огромен. Достаточно вспомнить участие в гонках ЛеМан-24 таких моделей, как Audi R18 e-quattro и Toyota TS040, чтобы понять, что производители ведут активные разработки для массового производства гибридных полноприводных машин в ближайшем будущем.

Минусы и плюсы гибридных и электрических автомобилей

Гибридные автомобили с полным приводом, к сожалению пока не совершенны. Все дело в их стоимости. Производство гибридных транспортных средств обходится значительно дороже бензиновых автомобилей. Также гибридные машины намного тяжелее своих традиционных версий. Все дело в весе аккумуляторов и электромоторов.

Но эти недостатки могут быть компенсированы за счет существенной экономии топлива в процессе эксплуатации машины. Например, модель Lexus RX450h с приводом AWD расходует топлива на несколько литров меньше, чем традиционная модель RX 350 AWD. Но пока, что не все гибридные машины могут похвастаться быстрой окупаемостью. Ведь переплачивая за новый гибридный автомобиль, каждый покупатель рассчитывает как можно быстрее окупить затраты на покупку. Но к сожалению многие гибридные автомашины очень дороги, что приводим к долгой окупаемости затрат на покупку.

Гибридные полноприводные машины AWD гораздо безопаснее и эффективнее. Так электромоторы помогают увеличить динамику и способствуют большей устойчивости на дороге. Благодаря этому многие модели гибридных автомобилей приобрели спортивный характер в отличие от своих бензиновых версий.

Типы электроприводов

Электроприводы можно разделить на три группы:

  • с аккумуляторным питанием (Battery Electric Vehicle — BEV) ;
  • гибридный (гибрид-плагины) (Hybrid Electric Vehicles — HEV и Plug-in Hybrid Electric Vehicles — PHEV) ;
  • электромобили на топливных элементах (FCEV).

Транспортные средства, работающие на энергии от батарей (BEV), приводятся в движение электродвигателями, а энергия, необходимая для их питания, хранится в соответствующих батареях.

Гибриды (HEV и PHEV) — это транспортные средства, в которых двигатель внутреннего сгорания поддерживается электродвигателем (не обязательно одним). Примером такого автомобиля может стать новая Skoda Superb PHEV (пхев), которая дебютирует в ближайшие месяцы. А в чем разница между HEV и PHEV? У них разные электроприводы, расскажем об этом чуть ниже.

Читать еще:  Ожидаемая премьера Peugeot 108 на автосалоне в Женеве 2014

Автомобиль на топливных элементах (FCEV) , как и электрический автомобиль, приводится в действие электродвигателем. Разница заключается в способе накопления и получения энергии. В FCEV батареи заменены на водородные баки. В результате химической реакции в топливных элементах, превращается в электричество и водяной пар. Теоретически это звучит как идеальное решение для вождения автомобиля, но на практике сложность конструкции, высокие производственные затраты и скромная инфраструктура делают поставки с водородом довольно отдаленным будущим.

Гибридные автомобили можно разделить на несколько подвидов. В принципе используются два типа электропривода это — первый определяет тип передачи:

Философии полного привода: Quattro, 4Matic, xDrive и азиаты – в чем отличия

Зачем это нужно?

Не так давно наш эксперт Борис Игнашин написал довольно подробный материал о том, зачем в принципе нужен легковой полный привод. Здесь мы сосредоточимся на технических и философских отличиях знаменитых систем 4х4, однако вкратце все-таки поясним, в чем смысл сего безобразия.

Самое очевидное «легковое» преимущество полноприводной трансмиссии — лучшая разгонная динамика: понятно, что машина быстрее разгоняется, если крутящий момент передается на все колеса, а не только на одну пару. Особенно это ощутимо на скользком покрытии и при избытке мощности: у некоторых спорткаров, имеющих модификации с разным типом привода, даже паспортное время ускорения до 100 км/ч меньше для версий «4Х4». Но все же у каждого колеса есть некий предел сцепления, и если при прямолинейном движении он ограничивает только величину реализуемого момента, то в повороте все несколько сложнее.

Тут нагрузка на ведущее колесо складывается из продольной силы, то есть вектора тяги, и поперечной, которая стремится сдвинуть машину наружу от центра дуги, — когда сумма этих сил превышает указанный предел, начинается скольжение. То есть, колесо, нагруженное моментом, хуже сопротивляется боковой нагрузке — именно поэтому в общем случае заднеприводные автомобили обладают избыточной поворачиваемостью (склонностью к заносу задней оси), а переднеприводные — недостаточной (снос передних колес). На практике встречаются исключения из этого правила, обусловленные различным распределением массы по осям и прочими факторами, но проблема имеет место быть, равно как и решение — полный привод.

Впрочем, здесь тоже все не так однозначно, причем в прямом смысле слова. Если моноприводная машина для мало-мальски квалифицированного и опытного водителя не является загадкой, то, заходя в быстрый поворот на полном приводе, нужно быть готовым как с сносу, так и к заносу, не говоря уж о скольжении всех четырех колес, причем одна фаза может моментально смениться другой.

Такое своенравие проявилось на одном из первых серийных полноприводных автомобилей Jensen FF, увидевшем свет еще в 60-х годах прошлого века. Автомобильные журналисты восторгались феноменальной устойчивостью британского спорткара (к слову, мощность его двигателя превышала 300 л.с.) на мокрой дороге, но отмечали, что по достижении предела он срывается резко и непредсказуемо, и «отловить» его очень непросто. С тех пор вот уже полвека конструкторы бьются над созданием полного привода без страха и упрека не для бездорожья, и определенные успехи, конечно же, есть.

Quattro и немцы

Первой по-настоящему удачной «легковой» системой полного привода считается знаменитая quattro от Audi (мы писали о ее истории очень подробно), сначала апробированная в ралли (и именно благодаря этому так «раскрученная»), а с 1981 года используемая и на «товарных» автомобилях. Между тем, поначалу в чем-то эта трансмиссия была даже более примитивной, чем у того же «Дженсена» пятнадцатилетней давности.

Англичане уже тогда использовали самоблокирующийся межосевой дифференциал оригинальной конструкции, причем несимметричный. У Audi же тяга распределялась между осями в пропорции 50:50, а роль «центра» играл обычный планетарный дифференциал, принудительно блокируемый водителем, примерно как у нашей «Нивы».

Заслуга немцев была в другом: они очень грамотно скомпоновали свою трансмиссию, идеально приспособив ее для традиционной «аудюшной» схемы — изначально передний привод и продольное расположение силового агрегата. Что же до передовых решений, то их долго ждать не пришлось: через несколько лет распределением тяги уже заведовал вышеупомянутый механический «самоблок» Torsen, мгновенно и плавно реагирующий на изменение условий движения.

Однако повадки полноприводников Audi все еще тяготели к переднеприводности: чтобы побороть недостаточную поворачиваемость, машину нужно было по-раллийному «ломать» на входе в поворот решительными действиями рулем или педалью акселератора. Разумеется, речь идет об экстремальном вождении, в штатных режимах автомобили отлично держали дорогу и охотно вписывались в повороты, но все же.

И в 2007 году Torsen стал асимметричным: «по умолчанию» он раздавал крутящий момент в соотношении 40:60 в пользу задних колес, а при необходимости они могли получать вплоть до 80 процентов тяги. В это же время и развесовка новых моделей была пересмотрена: если раньше конструкторы стремились максимально загрузить передние ведущие колеса, то теперь в угоду управляемости акцент делался на задние.

В результате система quattro, несомненно, выиграла, но, например, модель А4, лишенная ее «в базе», стала «недоприводной»: резкий старт на ее начальной переднеприводной версии весьма проблематичен из-за недостаточной загрузки передка. Справедливости ради нужно заметить, что «младшая» Audi A3 избежала подобной участи, поскольку она базируется на платформе Volkswagen Golf с поперечным расположением двигателя, и философия quattro тут совсем другая, основанная на постоянном переднем приводе и автоматически подключаемом заднем с фрикционной муфтой Haldex.

На фото: Audi Quattro

Подобные муфты, управляемые электроникой, только в приводе передних колес, использует сегодня BMW в своей трансмиссии xDrive. Правда, баварцы пришли к этому не сразу: с 1985-го до конца 90-х они использовали блокировки межосевого и заднего межколесного дифференциалов с помощью вискомуфт, затем им на смену пришли электрогидравлические муфты, а на рубеже веков проводились сравнительно недолгие эксперименты со свободными дифференциалами и электронной эмуляцией блокировок (тормозные механизмы «прихватывают» буксующие колеса, перераспределяя тягу на остальные).

Сегодня она сохранена на межколесном уровне, а межосевая муфта работает в тесном содружестве с электронными системами безопасности, отслеживающими массу различных параметров и дающими сигнал к степени сжатия фрикционных дисков. Этим xDrive принципиально отличается от quattro, где блокировка механическая, но, в отличие от Audi, полноприводные BMW при необходимости могут превращаться в чисто заднеприводные, что иногда очень даже неплохо.

А что же третий участник большой немецкой тройки? Вот уже более пятнадцати лет Mercedes остается верным концепции 4Matic, впервые воплощенной в 1997 году в трансмиссии кроссовера М-класса: свободные дифференциалы (межосевой — с небольшим «заднеприводным» акцентом) и никаких блокировок, только их имитация с помощью тормозов. Но имитация весьма убедительная: если хотя бы одно колесо сохраняет надежный контакт с покрытием, машина способна двигаться, а на скользкой дороге умная электроника ловко жонглирует тягой, избегая как недостаточной, так и избыточной поворачиваемости.

Между тем, начинался «Фирматик» в 1986 году с весьма мудреной по тем временам схемы: у полноприводного седана Е-класса было целых три гидромуфты, автоматически подключавших привод на передние колеса, а затем блокировавших межосевой и задний межколесный дифференциалы.

Похожую конструкцию имела трансмиссия суперкара Porsche 959, серийная версия которого увидела свет в том же 1986, с той лишь разницей, что у него двигатель располагался сзади, а блокировкой «центра» заведовал чрезвычайно продвинутый для своего времени компьютер. У нынешних полноприводных Porsche «мозги», разумеется, помощнее, но суть та же: электроника в тесном содружестве с системами безопасности управляет многодисковой муфтой в приводе передних колес, примерно так же, как у BMW.

Читать еще:  От чего зависит остаточная стоимость автомобиля

На фото: Porsche 959

Азиатский ответ

В Японии пионером в широком применении полного привода на легковых автомобилях считается сравнительно небольшая компания Fuji Heavy Industries, выпускающая машины под маркой Subaru. Сначала, в 70-х годах, они отличались явным внедорожным уклоном, но постепенно выкристаллизовалась схема знаменитого симметричного полного привода, явно не без влияния Audi.

С концепцией quattro ее роднят и продольное расположение двигателя, и базовый передний привод, и множество вариаций, возникавших в процессе эволюции, — но, в отличие от немцев, японцы все же отошли от идеи «честного» постоянного 4WD: с недавних пор на автомобилях с «автоматом» используется муфта автоматического подключения заднего моста.

Впрочем, это не помешало «субаровцам» создать настоящую легенду: в 1992 году дебютировала модель Impreza, созданная на укороченной платформе Legacy специально с прицелом на участие в ралли (еще одна параллель с Audi quattro). Гражданская версия спортивного болида получила обозначение WRX и самый мощный вариант STI, который быстро приобрел статус культовой машины для поклонников активного драйва. Гарантом этого стала трансмиссия с блокировками дифференциалов, где в разных поколениях использовались и вискомуфты, и тот же Torsen, а у нынешней STI между осями стоит конструкция под названием DCCD (Driver Control Central Differential), способная менять степень блокировки как самостоятельно, так и по желанию водителя.

На фото: Subaru Impreza

Извечный соперник спортивной «Импрезы» — Mitsubishi Lancer Evolution, стартовавший в том же 1992 и к настоящему времени переживший уже десятую смену поколений. Главное отличие от Subaru — поперечно расположенный двигатель, в остальном все похоже: постоянный полный привод, где «центр» изначально блокировался вискомуфтой, а теперь эта функция возложена на электронику.

Но главный козырь Mitsubishi — разработанный еще в 1996 году и совершенствовавшийся задний дифференциал AYC (Active Yaw Control): он не просто блокируется, а изменяет передаточное отношение главной передачи для каждого из колес отдельно с помощью редуктора, «подкручивая» в повороте то из них, на которое приходится большая нагрузка. В последней версии водитель может выбирать различные режимы работы трансмиссии, в зависимости от чего машина и едет по-разному: либо очень быстро и безопасно, следуя заданной траектории, либо по-хулигански, позволяя легко контролировать занос. Неудивительно, что многие эксперты называют нынешний EVO лучшим «драйвер’c каром» в мире из числа относительно недорогих, а недавнее решение японской компании прекратить его выпуск повергло поклонников в уныние.

Впрочем, нечто подобное можно испытать и за рулем куда более бюджетного «японца», Nissan Juke, — разумеется, в полноприводной версии. Его трансмиссия, конечно, попроще, но в ней есть своя изюминка: в приводе задних колес используется не одна фрикционная муфта, а две, своя для каждого колеса, и все та же вездесущая электроника теоретически может передавать тягу, например, только на правую сторону.

На практике это выливается в весьма эффективное оружие против недостаточной поворачиваемости, да и с вывешиванием колес такой Juke справляется очень достойно, — впрочем, последнее относится уже к проходимости, а мы ведем речь о «драйве». И тут у «Ниссана» есть еще одно выдающееся достижение в лице суперкара GT-R, примечательного не столько типом полного привода (между осями — многодисковая муфта, сзади — механический «самоблок»), сколько оригинальностью компоновки.

При переднем расположении двигателя его коробка передач вынесена к задним колесам для лучшей развесовки (так называемая схема transaxle), поэтому к ней идет один карданный вал, а другой, практически такой же длины, для привода передних колес, проходит параллельно ему в обратном направлении. На какие только ухищрения не пойдешь ради скорости и удовольствия от вождения!

Разумеется, приведенными примерами список разнообразных систем полного привода, используемых японскими производителями, не исчерпывается: для внутреннего рынка очень многие легковые модели, которые мы получаем в переднеприводной ипостаси, выпускаются в диковинных для нас модификациях «4х4».

Хотя в России, например, еще не так давно можно было приобрести седан Honda Legend с интеллектуальным приводом, распределявшим мощность, опять же, индивидуально для каждого колеса (впоследствии от этой системы отказались из-за дороговизны). Но практически все трансмиссии являются вариациями описанных схем, а отличия заключаются, в основном, в конструкции механизмов блокировки: это может быть электропривод или гидравлика, а у кого-то до сих пор в ходу старые добрые вискомуфты. Общая же тенденция — все более широкое применение электроники, от сложности и настроек которой сегодня зависит едва ли не больше, чем от механической составляющей.

Электродвигатели приводов агрегатов автомобиля

Требования, предъявляемые к электродвигателям, весьма разнообразны. Электродвигатели отопителей и вентиляторов автомобиля имеют продолжительный режим работы и малый пусковой момент; электродвигатели стеклоподъемника обладают большим пусковым моментом, но работают кратковременно; электродвигатели стеклоочистителей воспринимают переменные нагрузки и, следовательно, должны обладать жесткой выходной характеристикой, частота вращения вала не должна существенно меняться при перемене нагрузки; электродвигатели предпусковых подогревателей должны нормально работать при очень низких температурах окружающего воздуха.

В приводах агрегатов автомобиля применяют электродвигатели только постоянного тока. Их номинальные мощности должны соответствовать ряду 6, 10, 16, 25, 40, 60, 90, 120, 150, 180, 250, 370 Вт, а номинальные частоты вращения валов ряду 2000, 3000, 4000, 5000, 6000, 8000, 9000 и 10 000 об/мин.

Электродвигатели с электромагнитным возбуждением в системе электропривода агрегатов автомобиля имеют последовательное, параллельное или смешанное возбуждение. Реверсивные электродвигатели снабжены двумя обмотками возбуждения. Однако применение электродвигателей с электромагнитным возбуждением в настоящее время сокращается. Более широко распространены электродвигатели с возбуждением от постоянных магнитов.

Конструкции электродвигателей чрезвычайно разнообразны.


Рис. 2. Электродвигатель отопителя

На рис. 2 показано устройство электродвигателя отопителя. Постоянные магниты 2 закреплены на корпусе 12 электродвигателя пружинами 10. Вал якоря 11 установлен в металлокерамических подшипниках 1 и 5, расположенных в корпусе и в крышке 8. Крышка крепится к корпусу винтами, ввернутыми в пластины 9. Ток к коллектору 6 подводится через щетки 4, помещенные в щеткодержатель 3. Траверса 7 из изоляционного материала, объединяющая все щеткодержатели в общий узел, прикреплена к крышке 8.

На электродвигателях мощностью до 100 Вт общим является применение подшипников скольжения с металлокерамическими вкладышами, щеткодержателей коробчатого типа и коллекторов, штампованных из медной ленты с опрессовкой пластмассой. Применяют и коллекторы, изготовленные из трубы, имеющей на внутренней поверхности продольные пазы.

Крышки и корпус изготовляют цельнотянутыми из листовой стали. В электродвигателях стеклоомывателей крышки и корпус — пластмассовые. Статор электродвигателей электромагнитного возбуждения набирают из пластин; причем оба полюса и ярмо штампуют как одно целое из листовой стали.

Постоянные магниты типов 1 и 2 (см. табл. ниже) устанавливают в магнитопровод, залитый в пластмассовый корпус. Магниты типов 3, 4 и 5 прикрепляют к корпусу плоскими стальными пружинами или приклеивают. Магнит типа 6 устанавливают и приклеивают в магнитопровод, который размещается в крышке электродвигателя. Якорь набирают из пластин электротехнической стали толщиной 1-1,5 мм.

Технические данные основных типов электродвигателей с возбуждением от постоянных магнитов

таблица 1. Основные типы электродвигателей в электроприводах отечественных автомобилей.

ЭлектродвигательТип магнитаНазначениеНапряжение, ВПолезная мощность, ВтЧастота вращения вала, об/минМасса, кг
МЭ2681Привод омывателей121090000,14
МЭ268Б1То же241090000,15
45.37304Привод отопителей129041001
МЭИ3То же12525000,5
МЭ2374»242530000,9
МЭ2364»122530001
МЭ2554»122030000,8
19.37305»124025001,3
МЭ2505»244030001,3
МЭ237Б4Привод стекло-
очистителей
121220000,9
МЭ237Е4То же241220000,9
МЭ2512Привод вентиляра24525000,5
МЭ2726То же1210026002,25
Читать еще:  Лучшие фото и легковых автомобилей на автосалоне в Детройте-2015

Технические данные основных типов электродвигателей с электромагнитным возбуждением

таблица 2. Основные типы электродвигателей в электроприводах отечественных автомобилей.

ЭлектродвигательНазначениеНапряжение, ВПолезная мощность, ВтЧастота вращения вала, об/минМасса, кг
МЭ201Привод отопителей121155000,5
МЭ208То же241155000,5
МЭНАПривод стеклоочисти-телей121515001,3
МЭ202Привод предпускового121145000,5
МЭ202БТо же241145000,5
МЭ252»2418065004,7
32.3730»1218065004,7
МЭ228АПривод антенны121240000,8

Электродвигатели мощностью более 100 Вт близки по конструкции к генераторам постоянного тока. Они имеют корпус, изготовленный из полосовой малоуглеродистой стали или из трубы, на котором винтами закреплены полюса с обмоткой возбуждения. Крышки стянуты между собой болтами. В крышках расположены шариковые подшипники. Реактивные щеткодержатели обеспечивают стабильную работу щеток на коллекторе.

Двухскоростные двигатели с электромагнитным возбуждением имеют выводы каждой катушки возбуждения, электродвигатели с постоянными магнитами оборудованы третьей дополнительной щеткой, при подаче питания на которую частота вращения вала увеличивается.

Технические данные основных типов электродвигателей с возбуждением от постоянных магнитов представлены в табл. 1, а с электромагнитным возбуждением в табл. 2.

Перспективы развития

Однако не все так печально в области развития водородного транспорта в мире. По данным портала H2stations.org, количество специализированных заправок к концу 2019 года достигло 434 штук.

В текущем году информации о новых открытых точках пока не возникало. Но и этот показатель говорит о том, что за последние пять лет инфраструктура выросла в объеме практически в два раза.

В России Минэнерго разработала «дорожную карту» по развитию водородной отрасли до 2024 года. Пока в планах только производство, экспорт топлива и испытание пилотных установок на АЭС. Как альтернатива — развитие железнодорожного транспорта в стране на водороде, в ближайшие годы тоже экспериментально.

И если верить данным исследовательской фирмы Bloomberg NEF , через 30 лет доля водорода на рынке энерготоплива будет составлять 24 % от общего числа , а цена прогнозируемо снизится до уровня стоимости газа. До этого события транспорт на водороде не конкурент для электромобилей.

Преимущества

  1. Высокая эффективность.
  2. Низкая стоимость энергии.
  3. Больше пространства в салоне и багажнике.
  4. Выше мощность и крутящий момент, лучше динамические показатели.
  5. Электродвигатели не нуждаются в принудительном охлаждении
  6. Более эффективное торможение электродвигателем в режиме рекуперации. Меньше износ тормозных колодок.
  7. Электрический двигатель и трансмиссия практически не нуждаются в обслуживании.
  8. Лучшая устойчивость на дороге благодаря низкому центру тяжести.

Какой привод автомобиля лучше?

Итак, надо подводить итоги. Если все сильно упростить, то вывод можно сделать такой: лучшим видом привода является полный привод, работающий в паре с системой курсовой устойчивости ESP. Однако, полный привод обходится дороже при покупке и дорог в обслуживании, да и потребляет много топлива. Если же Вам нужно что-то более экономичное, то оптимальным вариантом станет передний привод, который обладает идеальным сочетанием характеристик. Ну а задний привод стоит выбирать, только если у Вас есть опыт и машина нужна Вам, в первую очередь, чтобы получать удовольствие от вождения.

Привод передний

Автомобили, оснащенные передним приводом, всю энергию мотора, соответственно, принимают на переднюю ось. Встречается этот тип привода чаще на бюджетных современных автомобилях, но также можно встретить и на более дорогих моделях. Переднеприводные автомобили менее подвержены заносам на скользкой дороге и в поворотах, чем заднеприводные машины, а также имеют сравнительно лучшую проходимость на пересеченной местности. Плюсы этого типа привода — практичность, адекватная цена и простота в эксплуатации. Начинающим водителям будет проще привыкнуть к управлению автомобилем на переднем приводе.

Как различные типы приводов влияют на поведение автомобиля

1. Заднеприводной автомобиль

Когда автомобиль движется прямо, и на него действует боковой ветер, происходит смещение ведущей задней оси (которую больше всего заносит) в сторону воздействующей силы (См. рисунок «а»). Машина начинает поворот вокруг точки, которая лежит на продолжении передней оси — полюс разворота. Появляется центробежная сила, она воздействует в едином направлении, что и боковой ветер, соответственно, машину начинает заносить еще сильнее.

Ниже вы можете увидеть схематичное изображение сил, которые действуют на машину во время боковом воздействии ветра: на рисунке «а» изображен автомобиль с задним типом привода; на рисунке «б» — автомобиль с передним типом привода; V — сила, с которой воздействует ветер; О — полюс поворота; F — центробежная сила; F1 и F2 — поперечная, а также продольная составляющие центробежной силы.

Если присутствует боковой ветер, то на машину во время движения начинают действовать следующие силы:

2. Переднеприводной автомобиль

При переднем типе привода легкового автомобиля, если есть боковой ветер, а машина передвигается по прямой, ее переднюю ось начинает заносить. Как указано на рисунке «б», центробежная сила воздействует в противоположном заносу направлении. Таким образом центробежная сила помогает выйти из заноса.

Во время поворота, когда происходит занос передних колес, чем сильнее становится центробежная сила, тем быстрее машина занимает нормальное положение. Это означает, что автомобиль с передним типом привода наделен небольшой поворачиваемостью. На дороге такая машина будет стоять лучше, по сравнению с заднеприводным автомобилем, в том числе и на скользком дорожном полотне.

3. Подключаемый (водителем) полный привод

Трансмиссия у таких машин включает в себя раздаточную коробку. Возможно, в ней есть пониженная передача, однако, скорее всего, у машины нет межосевого дифференциала. Поэтому второй мост (чаще всего передний) будет подключаться, когда вы движетесь по плохой дороге или вовсе при ее отсутствии. Когда дорожное полотно хорошее и сухое, это может снизить устойчивость и управляемость, поскольку машина будет постоянно пробуксовывать, ведь колеса не будут вращаться с разной скоростью.

Когда передний мост отключен, машина начинает рулить также, как и автомобиль с задним типом привода. На моделях с межосевым дифференциалом, может включаться полным привод даже на хорошем асфальте. Так машина будет более устойчивой на дороге, ведь тяговые усилия будут распределяться на все колеса.

Поворачиваемость автомобиля в этом случае претерпевает изменения: становится нейтральной, может стать и недостаточной, так как все колеса будут ведущими. Помните, что полный тип привода автомобиля приводит к повышению расхода топлива, так как мощность расходуется на подключенные элементы трансмиссии.

4. Полный привод, подключаемый автоматически

В подобных трансмиссиях энергия от мотора подается ко второй оси в случае, если ведущие колеса начинают буксовать. Благодаря тому, что тяговые усилия перераспределяется, машина перестает буксовать, становится устойчивой на дороге. Когда трансмиссия оснащена вискомуфтой, при сильном буксе ведущих колес она может быть полностью заблокирована, это называется хамп-эффектом.

Во время поворота, когда движение становится криволинейным, машина начинает вести себя непредсказуемо. Человек не всегда может правильно отреагировать и выполнить требуемые действия, чтобы предотвратить опасность. Если машина оснащена фрикционной муфтой с электронным управлением, такие ситуации на дороге — исключены: блокировка происходит автоматически в определенной зависимости. Если же машина не буксует, а дорожное полотно качественное, ее устойчивость и управляемость будет сравнима с автомобилем с передним типом привода.

5. Постоянный полный привод

Трансмиссия в такой машине оснащена межосевым дифференциалом, он блокируется тремя способами:

автоматически за счет сил внутреннего трения(«Торсен», «Квайф»);

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector